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SUMMARY

The �ux-corrected-transport paradigm is generalized to �nite-element schemes based on arbitrary time
stepping. A conservative �ux decomposition procedure is proposed for both convective and di�usive
terms. Mathematical properties of positivity-preserving schemes are reviewed. A nonoscillatory low-
order method is constructed by elimination of negative o�-diagonal entries of the discrete transport
operator. The linearization of source terms and extension to hyperbolic systems are discussed. Zalesak’s
multidimensional limiter is employed to switch between linear discretizations of high and low order. A
rigorous proof of positivity is provided. The treatment of non-linearities and iterative solution of linear
systems are addressed. The performance of the new algorithm is illustrated by numerical examples for
the shock tube problem in one dimension and scalar transport equations in two dimensions. Copyright
? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

An adequate treatment of convection-dominated transport problems remains a major challenge
in numerical simulation of both compressible and incompressible �ows. As a rule, approximate
solutions produced by linear discretization schemes are corrupted by non-physical oscillations
and=or excessive numerical di�usion. Thus, the use of a nonlinear shock-capturing viscosity
is indispensable if a good resolution of singularities is to be achieved without sacri�cing
important properties of the exact solution such as positivity and monotonicity. The pioneer-
ing work of Boris and Book [1] has established the basic principles for the construction of
high-resolution schemes. In particular, the authors introduced the concept of �ux-corrected-
transport (FCT) which essentially amounts to using a low-order method in regions with steep
gradients and a high-order method elsewhere.
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The original FCT algorithm named SHASTA was a rather specialized one-dimensional
�nite-di�erence scheme. It was dramatically improved by Zalesak [2] who proposed a gen-
uinely multidimensional generalization applicable to arbitrary combinations of high- and low-
order discretizations. In the �nite-element framework, �ux correction was �rst exploited by
Parrott and Christie [3] and promoted to maturity by L�ohner and his coworkers [4, 5]. The
classical FEM-FCT methodology builds on Zalesak’s formulation with antidi�usive element
contributions in place of �uxes. An alternative approach is based on applying the �ux limiter
edge by edge [6, 7].
Some modern compressible �ow solvers abandon the conventional �nite-element data struc-

ture altogether in favour of an edge-based data structure. Peraire et al. [8] developed a pro-
cedure for the conservative decomposition of Galerkin integrals into �uxes assigned to the
edges of a triangular or tetrahedral mesh. The transition to an edge-based data structure re-
duces the overhead incurred by indirect addressing and o�ers considerable savings in terms
of both CPU time and memory requirements [9]. Moreover, it facilitates the extension of the
one-dimensional theory to unstructured meshes. In particular, popular upwind-biased schemes
based on �ux di�erence splitting [10, 11] or �ux vector splitting (e.g. References [12–14])
can be readily implemented in the �nite-element context [15]. The spatial accuracy can be en-
hanced by using non-linear discretizations of MUSCL, TVD or LED type utilizing �ux=slope
limiters [13, 16–19]. To this end, a local one-dimensional stencil is reconstructed for each
edge by the insertion of two dummy nodes. The solution values at these nodes are obtained
by appropriate gradient recovery and=or linear interpolation techniques.
In this paper, we present a coherent methodology for the design of multidimensional

FCT schemes employing either the standard or the edge-based data structure for the �nite-
element mesh. Its foundations were laid in References [20, 21] where we applied the theory
of positivity-preserving schemes [13, 22] to derive a conservative FEM-FCT formulation valid
for arbitrary time stepping. No other implicit high-resolution �nite-element schemes seem to
be available to date. Explicit methods are typically more accurate than implicit ones, but the
severe stability limitation makes them extremely ine�cient for problems with strongly varying
velocities and=or mesh sizes. Likewise, steady-state computations based on time marching call
for a fully implicit time discretization. The details of the temporal evolution are immaterial in
this case, so that the (arti�cial) time step should be chosen as large as possible to minimize
the computational cost.
While the new FEM-FCT procedure was implemented using the traditional data structure,

the discrete di�usion/antidi�usion terms were decomposed into numerical �uxes which were
treated in an essentially one-dimensional fashion. In the case of simplex elements, the �uxes
can be associated with edges of the �nite-element mesh. At the same time, interacting nodes
of multilinear elements do not have to be connected by an edge. The low-order transport
operator was constructed from the high-order operator by the elimination of negative o�-
diagonal matrix entries. An advantage of this approach is that it is completely independent
of the underlying discretization procedure and of the spatial mesh. Moreover, it automatically
yields an upper bound for admissible time steps.
Below we extend the FEM-FCT schemes introduced in Reference [21] to problems with

source terms and systems of non-linear hyperbolic conservation laws. Another contribution of
this work is a universal strategy for the decomposition of Galerkin-type discretizations into
skew-symmetric internodal �uxes. Unlike the widespread algorithm of Peraire et al. [8], the
new decomposition method carries over to general �nite-element approximations on quadrilateral
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and hexahedral meshes. Therefore, it appears to be a promising tool for the development of
‘edge-based’ �ow solvers. Last but not least, we elaborate on various implementation aspects
and discuss the e�ciency of iterative solution techniques. Encouraging results obtained for a
number of one- and two-dimensional test problems demonstrate the potential of the implicit
formulation.

2. FEM FOR SCALAR CONSERVATION LAWS

Consider a generic time-dependent conservation law for a scalar quantity u

@u
@t
+∇ · f = q in � (1)

where q is a source term, and f is a �ux function, which may depend on the solution in a
nonlinear way. Typically we can distinguish between convective and di�usive �uxes:

f = vu− �∇u
Here the �rst term represents the convective transport with a characteristic velocity v. The
second one describes the di�usive transfer of the conserved quantity (e.g. mass or heat) from
regions of high concentration into regions of low concentration. If the di�usion coe�cient �
vanishes or is small as compared to v, the �ow is dominated by convection. In this case, the
hyperbolic nature of the equation at hand makes it notoriously di�cult to treat numerically.
The problem setting is completed by specifying initial and boundary conditions. The vari-

ational formulation of Equation (1) reads∫
�
w
[
@u
@t
+∇ · f − q

]
dx=0; ∀w (2)

The standard Galerkin space discretization is performed by using an approximation of u in a
suitable �nite-dimensional space and substituting the basis functions ’i for w. For customary
�nite elements, the sum of basis functions equals unity:

∑
i ’i ≡ 1. Summing all equations and

invoking the divergence theorem, we recover the underlying integral form of the conservation
law:

d
dt

∫
�
u dx=

∫
�
q dx −

∫
@�
f · n ds (3)

where n denotes the unit outward normal. This relation implies that the total amount of u in
� may only change due to �uxes through the boundary and internal sources or sinks. The
integral formulation is more general than the di�erential one, because it remains valid for
discontinuous solutions.
In light of the above, the Galerkin �nite-element method is conservative in an integral sense.

Mass conservation is a very important property which ensures that if a consistent numerical
method does converge, then it converges to a weak solution of the conservation law. At
the same time, the uniqueness of weak solutions is not guaranteed for non-linear hyperbolic
equations. Hence, an additional condition might be needed to pick out the physically relevant
entropy solution obtained in the limit of vanishing viscosity [23].
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Finite volume and discontinuous Galerkin methods apply formulation (3) directly to each
element of the triangulation, so that mass conservation is enforced not only globally but
also locally. Flux correction for such discontinuous approximations is fairly straightforward.
The objective of this paper is to extend the available FCT tools to continuous (linear and
multilinear) �nite elements and systems of hyperbolic conservation laws.

3. GALERKIN FLUX DECOMPOSITION

It is well known from the theory of �nite-di�erence methods that a numerical scheme is
conservative if it admits decomposition into a sum of �uxes from one node into another.
Indeed, as long as the internodal �uxes are equal in magnitude and opposite in direction,
the total mass of the system may only change due to boundary �uxes. Hence, it is highly
desirable to represent the numerical method in conservation form whenever possible. At the
same time, it has been largely unclear how to accomplish this for �nite-element discretizations
on unstructured meshes.
Peraire et al. [8] demonstrated that the �ux decomposition is feasible for the Galerkin

method employing triangular or tetrahedral elements with linear basis functions which have
a constant gradient. The authors advocated the transition to an edge-based data structure
which o�ers certain computational advantages as compared to the conventional element-based
formulation. The derivation of the decomposition procedure is quite tedious, though. The
interested reader is referred to the monographs by Lyra [15] and L�ohner [9] for details.
An excellent presentation of edge-based �nite element methods catering for high resolution
on unstructured grids can also be found in the review article by Morgan and Peraire [19].
Unfortunately, the approach proposed by Peraire et al. [8] is limited to simplex elements
with linear interpolation of the unknown solution and of the associated �ux function. In what
follows, we will work out an alternative �ux decomposition technique applicable to general
�nite-element approximations on arbitrary meshes including quadrilateral and hexahedral ones.
Integration by parts of the weak formulation (2) yields∫

�
w
@u
@t
dx −

∫
�
∇w · f dx+

∫
@�
w f · n ds−

∫
�
wq dx=0; ∀w (4)

A common practice in �nite-element computations of compressible �ow is to approximate the
�uxes in the same way as the desired solution. This approach termed the group �nite-element
formulation by Fletcher [24] provides an e�cient matrix assembly leading to a considerable
reduction in the computational cost. Surprisingly enough, it was also found to produce a
small gain in accuracy e.g. when applied to the Burgers equation on a uniform grid [24]. The
resulting savings in CPU time become increasingly pronounced for multidimensional problems
and=or strong non-linearities.
Let the solution, the �uxes and the source terms be represented in the form

u=
∑
j
uj’j; f =

∑
j
fj ’j; q=

∑
j
qj’j (5)

In fact, it is not compelling to use the same approximations for u and f . For instance, one
can think of a hybrid method, whereby the unknown solution is sought in the space of
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continuous piecewise-linear or multilinear functions, while the �uxes are interpolated using
non-conforming Crouzeix–Raviart [25] or Rannacher–Turek [26] elements. In this case, the
solution values would be de�ned at the nodes, whereas the degrees of freedom for the �uxes
would reside on the edges of the �nite-element mesh.
After the substitution of expressions (5) and the weighting functions w=’i into the vari-

ational formulation (4), we obtain

∑
j

[∫
�
’i’j dx

]
(u̇j − qj)−

∑
j

[∫
�
∇’i’j dx −

∫
@�
’i’j n ds

]
· fj=0 (6)

which can be written compactly in matrix form as

MC(u̇− q)=Kxfx + Kyfy + Kzfz (7)

in the three-dimensional case. For some applications (e.g. steady-state �ows), it may be worth-
while to replace the consistent mass matrix MC by its diagonal counterpart ML obtained by the
conservative row-sum mass lumping, which can be interpreted as using a low-order quadrature
rule for the numerical integration [27]. This modi�cation essentially decouples the solution
increments and results in a �nite-di�erence-like discretization. In particular, no linear systems
have to be solved for explicit schemes. The utility of the group formulation is illustrated by
the fact that the matrices Kx, Ky and Kz engendered by the corresponding �rst-order deriva-
tives can be assembled once and for all at the beginning of the simulation, as long as the
mesh does not change. This is in contrast to the standard �nite-element approach, whereby
the discrete operators for the linearized convective terms have to be updated in each time
step.
By construction, the discretized �ux term consists of an interior part and a boundary part.

The former is given by the integral

∑
j

[∫
�
∇’i ’j dx

]
· fj=

∑
j
cij · fj; cij=

∫
�
∇’i ’j dx (8)

where the coe�cient matrices cxij; c
y
ij; c

z
ij possess the zero column sum property, since it is

assumed that the sum of basis functions equals unity. Therefore, it is possible to express the
diagonal coe�cients in terms of o�-diagonal ones:

∑
i
cij=0 ⇒ cii=−∑

j �=i
cji (9)

It follows that the interior �ux term (8) can be rewritten as

∑
j
cij · fj=

∑
j �=i
gij where gij := cij · fj − cji · fi (10)

The newly introduced quantity gij represents the Galerkin �ux from node j into node i. It
is important that gji=−gij, so that node j receives the same contribution with the opposite
sign. Roughly speaking, gij is nothing else but the ‘projection’ of an averaged �ux onto the
segment joining the two nodes. It is worth noting that for one-dimensional linear �nite elements
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the weighting coe�cients are simply cij=−cji= 1
2 , so that gij=(fi+fj)=2. This stems from the

well-known fact that the Galerkin method is equivalent to the central di�erence approximation
of di�erential operators.
By virtue of relation (10), the terms resulting from the Galerkin discretization can be

decomposed into a sum of numerical �uxes similar to those encountered in conservative �nite-
di�erence methods. Galerkin �uxes can be associated with edges of the graph representing the
connectivity of the global �nite-element matrix. For linear triangles or tetrahedra, the graph
edges match the physical edges of the element, while multilinear or high-order approximations
will also give rise to ‘internal’ edges, which merely link the interacting degrees of freedom.
As a rule, each node exchanges mass with other nodes sharing an element with it. The net �ux
between any pair of nodes is zero, so that mass conservation is guaranteed. The contribution
of boundary �uxes is given by the surface integral in Equation (6), which can be evaluated
using an appropriate quadrature rule.
Importantly, the �ux decomposition procedure is applicable to generalized di�usion oper-

ators [21] which are de�ned as symmetric matrices having zero row and column sums. The
purely di�usive Galerkin �ux assumes a remarkably simple form∑

i
dij=

∑
j
dij=0; dij=dji; ⇒ gij=dij(uj − ui) (11)

Note that generalized di�usion operators are not required to have continuous counterparts.
Some typical examples are the discrete Laplacian, the streamline di�usion operator and the
matrix MC−ML sometimes referred to as ‘mass di�usion’. As we will see shortly, the properties
of discrete di�usion operators render them a valuable tool for the design of non-oscillatory
low-order methods to be combined with high-order ones within the �ux-corrected-transport
algorithm.
Another promising approach to the derivation of high-resolution �nite-element schemes

involves the replacement of the original Galerkin �ux by another consistent numerical �ux.
Its potential is demonstrated by numerous publications [15, 18, 19] in which one-dimensional
limiters are successfully applied on unstructured meshes in conjunction with the edge-based
data structure of Peraire et al. [8]. In particular, approximate Riemann solvers with upwind-
biased interpolations, scalar-limited dissipation schemes and other essentially one-dimensional
discretization tools developed for systems of hyperbolic conservation laws can be integrated
into the �nite-element framework. For high-resolution schemes based on the reconstruction of
a local one-dimensional stencil, the limiter depends not only on the unknowns and �uxes but
also on the algorithm employed to obtain the solution values at dummy nodes. Simulation
results are strongly a�ected by the choice of the recovery procedure, especially in the case of
highly irregular meshes [15].

4. POSITIVITY CRITERIA

In this section, we introduce some mathematical tools which are of importance for the develop-
ment of high-resolution schemes. Since many physical quantities are inherently non-negative,
it is natural to impose this constraint on the numerical solution as well. Moreover, it is known
that positivity-preserving schemes do not give rise to non-physical phenomena. In particular,
they encompass the important class of monotone methods which guarantee that a converged
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solution of the conservation law does satisfy the entropy inequality. A very handy positivity
criterion is provided by the concept of an M-matrix as explained below.

De�nition
A non-singular discrete operator A∈Rn×n is called an M-matrix if aij60 for i �= j and all the
entries of A−1 are non-negative.

If A is strictly diagonally dominant and aii¿0, while aij60 for i �= j, then A is an M-
matrix. Note that for M-matrices Ax¿0 implies that x¿0. This property leads to the following
fundamental lemma:

Lemma
Let the numerical scheme be represented in abstract matrix operator form as

Lun+1 =Run (12)

A su�cient condition for such a scheme to preserve positivity is that L be an M-matrix and
all entries of R be non-negative (R¿0).

The conditions of the lemma are su�cient (but not necessary) to ensure that the numerical
solution satis�es the discrete maximum principle. Furthermore, it seems expedient to require
that the steady-state counterpart of L be an M-matrix as well. Otherwise non-physical ripples
might emerge even though the solution remains positive.
To introduce another useful concept, consider a semi-discrete problem of the form

dui
dt
=
∑
j
cijuj;

∑
j
cij=0 (13)

where ui are the nodal values, and cij are some coe�cients depending on the procedure
employed for spatial discretization. In particular, the lumped-mass Galerkin discretization of
the transport equation admits such a representation if the �ow is incompressible.
Since the coe�cient matrix has zero row sum, the scheme can be rewritten as

dui
dt
=
∑
j �=i
cij(uj − ui) (14)

Furthermore, suppose that all coe�cients are non-negative: cij¿0; j �= i. Then this scheme is
stable in the L∞-norm. Indeed, if ui is a maximum, then uj − ui60; ∀j, so that dui=dt60.
Hence, a maximum cannot increase, and similarly a minimum cannot decrease. As a rule,
coe�cient matrices are sparse, so that cij=0 unless i and j are adjacent nodes. Arguing as
above, one can show that in this case a local maximum cannot increase, and a local minimum
cannot decrease. Schemes which possess this property are called local extremum diminishing
(LED).
The LED criterion was introduced by Jameson [13, 22] as a convenient tool for the design

of high-resolution schemes on unstructured meshes. It implies positivity, since if the solution
is positive everywhere, then so is the global minimum which cannot decrease by de�nition.
Hence, the LED property provides an e�ective mechanism for preventing the birth and growth
of non-physical oscillations. In the one-dimensional case, it guarantees that the total variation
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of the solution de�ned as

TV (u)=
∫ +∞

−∞

∣∣∣∣@u@x
∣∣∣∣ dx (15)

does not increase. For the sake of simplicity, consider homogeneous Dirichlet boundary con-
ditions at both endpoints. Then the total variation is given by

TV(u)=2(
∑
max u−∑

min u) (16)

Thus, a one-dimensional LED scheme is necessarily total variation diminishing (TVD). This
is a highly advantageous property, which has formed the basis for the development of a whole
class of non-oscillatory schemes. The advantage of the LED principle as compared to TVD
concepts is its applicability to multidimensional problems on both structured and unstructured
meshes.
Recall that Equations (13) and (14) correspond to the problem discretized in space only.

Let us now investigate the conditions under which an LED scheme will remain positive after
the time discretization. If the standard one-step �-scheme is employed, the fully discretized
equation reads

un+1i − uni
�t

= �
∑
j �=i
cij(un+1j − un+1i ) + (1− �)∑

j �=i
cij(unj − uni ); 06�61 (17)

The choice of the parameter � speci�es the type of time stepping. The extreme cases �=0
and �=1 de�ne the well-known forward and backward Euler methods. Both of them are
�rst-order accurate with respect to the time step �t. The method corresponding to �=0:5 is
known as the Crank–Nicolson scheme, which is second-order accurate.
The application of our lemma to Equation (17) yields the following theorem [21].

Positivity Theorem
A local extremum diminishing scheme discretized in time by the backward Euler method is
unconditionally positive. Other time-stepping schemes (06�¡1) preserve positivity under the
CFL-like condition

1 +�t(1− �) min
i
cii¿0 (18)

An important message delivered by this theorem is that the positivity criterion at our dis-
posal makes it possible to obtain rigorous estimates of the largest admissible time step for
explicit schemes. Remarkably, the derivation of the upper bound does not require any know-
ledge of the underlying partial di�erential equation and of the employed spatial mesh. It is
su�cient to examine the diagonal coe�cients cii of the semi-discrete scheme. Upper bounds
for non-LED schemes can be readily derived in the same way.

5. CLASSIFICATION OF NON-LINEAR SCHEMES

The positivity concepts introduced above lay the groundwork for the construction of high-
resolution numerical schemes. The desired properties of discrete operators can be realized by
the introduction of arti�cial di�usion or by the use of upwind biasing. However, it was shown
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by Godunov [28] that no linear discretization method of order higher than �rst can guarantee
monotonicity of the numerical solution. In practice, this means that the results produced by
such schemes are overly di�usive. Higher accuracy can be attained by sophisticated non-
linear methods with coe�cients depending on the solution. The control of arti�cial di�usion
is typically executed by means of �ux or slope limiters which adaptively switch between high-
and low-order methods. The high-order approximation is used in regions where the solution
is smooth, whereas the order is reduced in the vicinity of discontinuities so as to dampen
non-physical undershoots and overshoots.
Non-linear high-resolution schemes can be classi�ed into smoothness monitoring (SM)

and di�usion-antidi�usion (DAD) methods [29]. The former approach relies on some kind of
smoothness sensors to assess the minimum amount of arti�cial di�usion that must be applied to
preserve monotonicity or at least positivity. Both the amplitudes and the phases of the Fourier
modes are predetermined by the SM procedure. By contrast, numerical schemes falling into
the DAD class employ ‘operator splitting’ to separate the e�ects of convective transport and
(limited) antidi�usion. At the �rst stage, su�cient constant arti�cial di�usion is built into the
discretization of transport terms, so as to maintain monotonicity. This modi�cation reduces the
phase errors but leads to a pronounced damping of the harmonics. The second step corrects the
amplitudes by introducing a properly tuned non-linear antidi�usion. Remarkably, the phases
are not a�ected by this correction, so that the improvement of the phase accuracy gained
in the �rst step persists. Dietachmayer [29] argued that the better phase properties of DAD
methods make them superior to SM techniques. Indeed, since the tendency of the solution to
oscillate is alleviated in the �rst step, more compensating antidi�usion can be added in the
second step without loss of positivity. Hence, DAD schemes can be generally expected to
exhibit better accuracy and contain less (net) arti�cial dissipation than SM methods.
In the design of �ux-corrected-transport algorithms, the SM and DAD techniques have

been used interchangeably. The SHASTA scheme of Boris and Book [1] is a classical DAD
method. At the same time, its generalization proposed by Zalesak [2] is of the SM type.
L�ohner et al. [4] employed mass lumping and added constant mass di�usion to transform
an explicit high-order method into a low-order one. This approach is very attractive from
the view point of computational e�ciency, but the involved free parameter should be chosen
with care. The e�ective di�usion coe�cient is inversely proportional to the time step, so that
the scheme becomes increasingly overdi�usive as the time step dwindles. This is acceptable,
because excessive smearing is likely to be cured by the antidi�usion step. On the contrary,
the case of insu�cient arti�cial di�usion is very alarming, since spurious extrema may arise
and be transmitted to the �nal solution.
Explicit time stepping stipulates the use of small time steps due to the CFL condition. In

this case, the variable di�usion coe�cients corresponding to SM schemes are smaller than
the constant value for a typical DAD method. Some extra di�usion may even prove to be
bene�cial as explained above. On the other hand, implicit schemes are usually operated at
large Courant numbers, which rules out the constant-di�usion approach to the construction
of the low-order method. Due to the failure of DAD schemes to cope with large time steps,
we will adhere to the SM methodology. Finite-element methods utilizing smoothness sensors
and=or �ux limiters to modulate arti�cial di�usion were proposed in the late 1980s by several
authors [7, 16, 30]. As we are about to see, the �exibility of locally modulated dissipation
makes it a valuable tool for the derivation of �nite-element discretizations satisfying the
positivity constraint [20, 21].
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6. LOW-ORDER DISCRETIZATION

To a large extent, the performance of the �ux-corrected-transport procedure depends on the
quality of the underlying low-order method which is supposed to preserve positivity and
withstand the formation of numerical wiggles. In the realm of �nite-di�erence and �nite-
volume discretizations, a perfect candidate for this job is certainly the upwind scheme. At
the same time, it has been largely unclear how to perform upwinding in the �nite-element
framework. Most upwind-like �nite-element methods encountered in the literature resort to
a �nite-volume discretization for the convective terms [16, 31]. An alternative derivation of
the least di�usive positivity-preserving scheme can be carried out by adding discrete di�usion
depending solely on the magnitude and position of negative entries in the �nite-element matrix
[21].
The scalar conservation law (1)–(2) discretized in space by the Galerkin method can be

written in the form

MC
du
dt
=KHu+ q (19)

In order to render this semi-discrete scheme positive, we must perform mass lumping, so as
to remove the implicit antidi�usion built into the consistent mass matrix. Furthermore, the
discrete transport operator KH should be modi�ed by adding a proper amount of arti�cial
di�usion. We de�ne its low-order counterpart as KL=KH + D, where the dissipation tensor
D is designed so as to eliminate all negative o�-diagonal entries of the high-order operator
[21]:

dii=−∑
k �=i
dik ; dij=dji= max{0;−kHij ;−kHji }; ∀i¡j (20)

In essence, this corresponds to applying one-dimensional di�usion operators associated with
the (�ctitious) edges connecting the adjacent nodes. It is easy to verify that D is characterized
by zero row and column sums, and thus enjoys all properties of generalized di�usion operators
including mass conservation. Note that if physical di�usion is strong enough, so that the
coe�cients are non-negative from the outset, then no arti�cial di�usion is added. Hence, in
di�usion-dominated cases the matrices KH and KL are identical. For systems of hyperbolic
conservation laws, the modulation parameter dij is set proportional to the spectral radius of
the corresponding Roe matrix (see Example 2 below).
The time discretization of the modi�ed scheme yields

(ML − ��tKL)un+1 = (ML + (1− �)�tKL)un +�t qn+� (21)

This fully discretized equation di�ers from (12) by the presence of the source term, which
may take negative values. In order to prevent the violation of the positivity constraint, source
terms can be linearized as proposed by Patankar [32]:

q= qC + qPu where qC¿0; qP60 (22)

A simple way to perform such a splitting is based on the identity

q= q+ − q−= q+ −
(
q
u

−)
u (23)
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in which q+ is the positive part of the source term, and −q− is the negative one. Thus,
we can adopt qC = q+, qP=−q−=u∗, where u∗ denotes the best approximation to u currently
available.
Note that the actual state u about which the source term is linearized, is yet to be speci�ed.

For q= qn+� it is natural to take u= �un+1 + (1− �)un. Alternatively, we can simply linearize
about u= un+1 regardless of the choice of �. An advantage of this approach is that Equation
(21) assumes the convenient form (12) with

L=ML − ��tKL +�tS−; S−=diag{q−=u∗}
R=ML + (1− �)�tKL +�tS+; S+ =diag{q+=un}

For this kind of splitting, the diagonal matrices S− and S+ engendered by the source term
are seen to reinforce the properties of L and R required by the lemma.
By construction, all o�-diagonal entries of the matrix L are non-positive, while those of

the matrix R are non-negative. Therefore, it remains to secure the positivity of diagonal
coe�cients. Since the elements of ML and the contributions of source terms (if any) are
positive, this condition can always be realized by choosing the time step to be small enough.
In particular, the time step for the low-order discretization of the incompressible convection–
di�usion equation without source terms is bounded by

�t6
1

1− � mini {−mi=kLii | kLii¡0} (24)

where mi denote the diagonal entries of the lumped mass matrix. This CFL-like condition,
which follows from the positivity theorem, gives a sharp estimate of the maximum admissible
time step. It can be used to steer adaptive time stepping for (semi-) explicit schemes. The
upper bound depends on the degree of implicitness � and on the ratio mi=kLii . Hence, excessive
arti�cial di�usion not only degrades the accuracy of the method but also requires taking
impractically small time steps.

Example 1 (One-dimensional scalar convection)
Let us illustrate the construction of low-order operators by a one-dimensional example. Con-
sider the pure convection equation

@u
@t
+ v

@u
@x
=0 (25)

discretized on a uniform mesh of linear elements. For the sake of simplicity assume that the
velocity v is constant and positive. The involved element matrices have the form

M̂L =
�x
2

[
1 0

0 1

]
; K̂

H
=
v
2

[
1 −1
1 −1

]
(26)

After the global matrix assembly, the central di�erence approximation of the convective term
is recovered at interior nodes:

dui
dt
=−v ui+1 − ui−1

2�x
(27)
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The minimum amount of arti�cial dissipation su�cient to enforce positivity is proportional
to d̂12 = v=2. The corresponding discrete di�usion operator restricted to one element is given
by

D̂=
v
2

[−1 1

1 −1

]
⇒ K̂

L
= v

[
0 0

1 −1

]
(28)

The resulting low-order scheme is seen to be equivalent to the upwind �nite-di�erence method
in the interior:

dui
dt
=−v ui − ui−1

�x
(29)

Obviously, this is the least di�usive linear scheme which preserves positivity. The associated
CFL condition reads

v
�t
�x
6

1
1− � (30)

This example demonstrates that our low-order discretization reduces to standard upwind-
ing for pure convection in one dimension. At the same time, its derivation based on the
post-processing of the discrete transport operator remains valid for arbitrary meshes and mul-
tidimensional problems. Moreover, physical di�usion (if any) is automatically detected, and
the amount of arti�cial di�usion is reduced accordingly.

Example 2 (One-dimensional Euler equations)
To elucidate the derivation of positive low-order schemes for systems of hyperbolic conser-
vation laws, we consider the one-dimensional Euler equations of gas dynamics

@U
@t
+
@F
@x
=0 (31)

written in terms of the conservative variables and �uxes

U =



�

�v

E


 ; F =




�v

�v2 + p

v(E + p)


 (32)

where �, v, p and E represent the density, velocity, pressure and total energy of the �uid,
respectively. This system is completed by specifying the equation of state relating the energy
to pressure and density:

E=
p
�− 1 +

1
2
�v2 (33)

in which � denotes the ratio of speci�c heats for a polytropic gas.
Alternatively, the Euler equations may be represented in the quasi-linear form

@U
@t
+ A

@U
@x
=0 (34)
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The Jacobian matrix A= @F=@U is given by

A=




0 1 0

(�− 3)v2=2 (3− �)v �− 1
v[(�− 1)v2=2− h] h− (�− 1)v2 �v


 (35)

where h=(E + p)=� is the total enthalpy.
Interestingly enough, the �ux vector F is a homogeneous function of the conservative

variables U , so that the following useful identity holds:

F =
@F
@U

U =AU (36)

It is worth mentioning that the �ux vectors Fx; Fy; Fz for compressible inviscid �ow in three
dimensions also possess this property [15].
The strict hyperbolicity of the Euler equations follows from the fact that A is diagonalizable

with distinct real eigenvalues. Indeed, it admits the decomposition

A=R�R−1 where �=diag{v− c; v; v+ c} (37)

is the diagonal matrix of eigenvalues, and

R=




1 1 1

v− c v v+ c

h− vc v2=2 h+ vc


 (38)

is the matrix of right eigenvectors. Here c=
√
�p=� stands for the local speed of sound.

If we apply the Galerkin discretization to the weak formulation of Equation (31) without
integrating by parts, the semi-discrete problem can be cast into the form

MC
dU
dt
=
∑
j �=i
kij(Fj − Fi)=

∑
j �=i
kijÂ(Uj −Ui) (39)

where kij= ± 1=2 in one dimension (see above), and Â is the so-called Roe matrix obtained
by evaluating the Jacobian at the intermediate state [10]

�̂=
√
�i�j; v̂=

√
�ivi +

√�jvj√
�i +

√�j ; ĥ=
√
�ihi +

√�jhj√
�i +

√�j (40)

The density-averaged quantities �̂, v̂ and ĥ are called the Roe mean values.
Note that the transition from the �uxes to the nodal solution values in (39) makes it

possible to calculate the contributions of edges to the global �nite-element matrices explicitly.
The coe�cients of the nine blocks Ckl are augmented as follows:

cklii = c
kl
ii − kijâkl; cklij = c

kl
ij + kijâkl

cklji = c
kl
ji + kjiâkl; ckljj = c

kl
jj − kjiâkl

(41)

where âkl denote the entries of the 3×3 matrix Â corresponding to the edge eij. The assembly
process remains the same in multidimensions. A distinct advantage of this approach is that

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:265–295



278 D. KUZMIN, M. M �OLLER AND S. TUREK

the coe�cients kij are typically �xed, so that the matrices can be e�ciently assembled edge
by edge without resorting to numerical integration.
A usable low-order method can be constructed by adding arti�cial di�usion proportional to

the spectral radius of the Roe matrix:

dij= �max|kij − kji|=2 where �max = |v̂|+ ĉ (42)

This scalar dissipation is to be inserted into the three diagonal blocks:

ckkii = c
kk
ii − dij; ckkij = c

kk
ij + dij

ckkji = c
kk
ji + dij; ckkjj = c

kk
jj − dij

(43)

In the one-dimensional case, dij= �max=2. Thus, for scalar convection problems it reduces to
the parameter value derived in Example 1.
One of the most popular upwind-biased methods for the numerical solution of the Euler

equations is Roe’s approximate Riemann solver, which can be implemented by using the
modi�ed �ux

G∗
ij=

Fi + Fj
2

+
1
2
|Â|(Uj −Ui); (44)

where

|Â|= R̂|�̂|R̂−1
; |�̂|=diag{|v̂− ĉ|; |v̂|; |v̂+ ĉ|} (45)

instead of the centered Galerkin �ux Gij=(Fi+Fj)=2 in decomposition (10). In essence, this
kind of �ux di�erence splitting corresponds to adding tensorial arti�cial dissipation |Â|(Uj −
Ui)=2, which a�ects both the diagonal and the o�-diagonal blocks of the discrete transport
operator. Roe’s Riemann solver constitutes a good low-order method per se but it results
in considerable overhead costs and is not to be recommended for the use in the FEM-FCT
environment.

7. GENERALIZED FEM-FCT FORMULATION

Another cornerstone of the FEM-FCT algorithm is the linear high-order method. A variety of
�nite-element schemes employing streamline di�usion to stabilize the troublesome convective
terms were proposed in References [33–35]. For instance, Taylor–Galerkin methods attribute
this stabilization to high-order time derivatives in the Taylor series expansion. This leads
to improved time-stepping schemes which are combined with the standard Galerkin spatial
discretization. The most popular representative of such stabilized methods is the well-known
Lax–Wendro� scheme. An investigation of the modi�ed equation for its �nite-element counter-
part reveals that the introduced dissipation just counterbalances the intrinsic negative di�usion
which renders the explicit Euler=Galerkin scheme unstable for pure convection problems. For
an in-depth study of the Lax–Wendro� and higher-order Taylor–Galerkin methods the reader
is referred to References [35, 36].
While the stabilization of convective terms is mandatory for the fully explicit time dis-

cretization, implicit �nite-element schemes based on the Crank–Nicolson and backward Euler
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time stepping are unconditionally stable. Therefore, they can be used as a high-order method
without being stabilized by streamline di�usion. Linear discretization schemes of this type
are of little use, because they are prone to non-physical oscillations. The incorporation of
a �ux limiter makes it possible to get rid of oscillations in the framework of non-linear
Crank–Nicolson/FCT and backward Euler/FCT methods.
The high-order transport operator can be transformed into a low-order one as explained in

the previous section. For simplicity, let us omit the (linearized) source terms. The resulting
methods of high and low order discretized in time by the standard �-scheme are related by
the formula

(ML − ��tKL)uH =(ML + (1− �)�tKL)un + F(uH ; un) (46)

where the antidi�usion responsible for high spatial accuracy is given by

F(uH ; un)=−(MC −ML)�uH −�t(KL − KH )[�uH + (1− �)un] + �t Sun (47)

Here the superscript H refers to the high-order solution, and S stands for the streamline
di�usion operator which is required only for the fully explicit scheme. If the antidi�usive
term F(uH ; un) is omitted, then the positive low-order scheme is recovered, whereas retaining
it yields the original high-order method.
It can readily be seen that all the matrices in (47) represent discrete (anti-) di�usion

operators and thereby lend themselves to decomposition into �uxes

fij = −mij(�uHj −�uHi )−�t dij[�(uHj − uHi ) + (1− �)(unj − uni )]
+�t sij(unj − uni ); fji=−fij; i¡j (48)

These raw antidi�usive �uxes o�set the errors induced by mass lumping, ‘upwinding’ and
�rst-order time discretization (for the explicit scheme). The coe�cients mij; dij and sij denote
the entries of the consistent mass matrix, arti�cial di�usion and streamline di�usion operators,
respectively.
The crux of the FCT procedure consists in adding as much antidi�usion as possible without

generating non-physical undershoots and overshoots. The �ux-corrected version of scheme (46)
can be written in the form

miun+1i − ��t∑
j
kLiju

n+1
j =miũi +

∑
j �=i
�ijfij; �ji= �ij (49)

where �ij denote the correction factors (see the next section), while ũ represents the positivity-
preserving solution to the explicit subproblem

miũi=miuni + (1− �)�t
∑
j
kLiju

n
j (50)

In essence, ũ corresponds to an intermediate solution computed at the time instant tn+1−� by
the explicit low-order scheme. It reduces to the old solution un for the backward Euler method
and to the low-order solution uL for the forward Euler method.
It is obvious that the success of the FCT algorithm depends on the positivity of the provi-

sional solution ũ and on the choice of the correction factors �ij. For ũ to be positive, the time
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step must satisfy the CFL-like condition (24) unless the scheme is fully implicit. As long as
the left-hand side operator is an M-matrix, our positivity criteria ensure that scheme (49) can
be rendered positive by tuning the correction factors.
The new family of FEM-FCT schemes distinguishes itself in that it is applicable to ex-

plicit and implicit time discretizations alike. The fully explicit scheme is consistent with the
standard FCT methodology. Note that implicit schemes require solving two non-symmetric
linear systems per time step: one for the high-order solution (which is needed to compute the
antidi�usive �uxes) and one for the �nal solution. Nevertheless, implicit methods are typically
more e�cient than explicit ones because larger time steps can be taken. If iterative solvers
are employed, the high-order solution provides a reasonable initial guess for the �nal solution.
The majority of practical applications are described by non-linear conservation laws. In

this case, the matrices KH and KL depend on the unknown solution, so that additional outer
iterations are necessary for implicit schemes. It will be noted that the linearization of the
problem using extrapolation in time can entail a loss of mass and alter the shock speed. The
simplest iterative treatment of non-linearities is a�orded by a �xed point defect correction
method. If we consider an abstract non-linear system of the form

A(u)u= b (51)

then the basic non-linear iteration can be formulated as

u(l+1) = u(l) − [C(u(l))]−1(A(u(l))u(l) − b) (52)

where l is the outer iteration counter, and C is a suitably chosen ‘preconditioner’ (an approx-
imate Fr	echet derivative) which should be easy to invert. The iteration process is terminated
when the relative solution changes are small enough or l exceeds a given limit. As a rule, the
‘inversion’ of C is also performed by some iterative procedure. Hence, a certain number of
inner iterations per cycle is required. It is worth mentioning that the problem does not have
to be solved very accurately at each outer iteration. A moderate improvement of the residual
(1–2 digits) is su�cient to obtain a good overall accuracy.
For a non-linear problem of form (46), it is reasonable to use the low-order operator as

preconditioner:

C(u(l))=ML − ��tKL(u(l))
This yields an iterative FEM-FCT algorithm, whereby the approximate solution and the trans-
port operator are successively updated as follows:

(ML − ��tKL(u(l)))u(l+1) = (ML + (1− �)�tKL(un))un + F(u(l); un) (53)

The last term is composed from the (limited) antidi�usive �uxes. Flux correction can be
performed after each outer iteration or just once after the high-order solution has converged.
In either case, positivity of the numerical solution is guaranteed.

8. LIMITING STRATEGY

The �ux limiter is a key element of the FEM-FCT paradigm. By varying the correction
factors �ij between zero and unity, it is possible to obtain the di�usive low-order solution, the
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oscillatory high-order solution or anything in-between. Clearly, it is desirable to utilize the
antidi�usive terms to the greatest extent possible without generating wiggles and violating the
positivity constraint. Following L�ohner et al. [4], we employ Zalesak’s limiter to select the
‘optimal’ correction factors. Kuzmin and Turek [21] demonstrated that this multidimensional
limiter can be readily extended to implicit time discretizations. This enables us to adopt
a uni�ed limiting strategy for explicit and implicit schemes. The ins and outs of the �ux
correction process are elucidated below.

8.1. Prelimiting step

Let us start with an optional but important component of the �ux limiter. It turns out that
explicit FCT schemes may bene�t from canceling all antidi�usive �uxes directed down the
gradient of ũ:

fij := 0 if fij(ũi − ũj)¡0 (54)

This test should be applied before the �ux correction step. Its purpose is to ensure that the
�ux does not smooth the low-order solution. To put it another way, an antidi�usive �ux is
not allowed to be di�usive. When this happens, small-scale numerical ripples can be produced
even though the solution remains positive. Hence, the limiter is positivity preserving but not
monotonicity preserving [37].
The prelimiting of antidi�usive �uxes can be traced back to the original SHASTA scheme

[1]. Zalesak also mentioned this approach in passing [2] but did not promote its regular use.
He argued that the majority of antidi�usive �uxes act to steepen the gradient, while the e�ect
of amendment (54) is minimal and cosmetic in nature. This remark has discouraged the use
of prelimiting in FCT algorithms based on Zalesak’s multidimensional limiter. Apparently,
this is not the sole reason why this step is missing in the FEM-FCT procedure of L�ohner
et al. [4]. The replacement of antidi�usive �uxes by element contributions makes the prelimit-
ing impossible to carry out for multidimensional problems. Only the comeback of a �ux-based
formulation enables us to apply this technique in the �nite-element context.
DeVore [37] has rediscovered the preprocessing of antidi�usive �uxes as a way to achieve

monotonicity and demonstrated that it can lead to a dramatic qualitative improvement of
dynamic simulation results. Even for simple test problems with discontinuous solutions, re-
markable ‘esthetic’ improvements are observed [21]. Therefore, the prelimiting step is to be
included in explicit FCT algorithms. In our experience, it remains relevant also for the implicit
schemes presented in this paper.

8.2. Zalesak’s limiter

Zalesak’s limiter remains the only genuinely multidimensional high-resolution scheme avail-
able to date. In order to elucidate its operating principles and internal structure, we restrict
ourselves to the fully explicit case in which ũ= uL. In the sequel, we will show that the
same limiting strategy can be applied to implicit FEM-FCT schemes. The basic ingredients
of Zalesak’s limiter are sketched in Figure 1 using the close-up of a uniform one-dimensional
mesh.
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Figure 1. Zalesak’s limiter in one dimension.

Let ũmaxi and ũmini denote the maximum and minimum solution values at the stencil Si which
consists of node i and its nearest neighbours:

ũ
max
min
i =max

min ũj; j∈ Si (55)

In the classical theory of explicit FCT schemes [1], these quantities represent the upper and
lower bounds for the nodal values of the �nal solution. The task of the limiter is to guarantee
that the antidi�usive �uxes cannot conspire to create new extrema or accentuate already
existing ones.
In fact, Zalesak proposed that both un and uL be involved in the computation of solution

bounds. The screening of the old solution was intended to alleviate ‘peak clipping’ inherent
to the FCT limiter. This modi�cation was shown to produce the desired e�ect for a number
of test con�gurations. At the same time, the use of outdated information on the magnitude of
local maxima and minima may lead to the formation of numerical ripples in other situations.
For instance, physical extrema may decay with time due to negative source terms or a variable
velocity �eld. In this case, the resurrection of old peaks would result in an overshoot. Hence,
it is prudent to search for extrema only in the low-order solution as in the SHASTA scheme
of Boris and Book [1].
Zalesak’s limiter can be elucidated as follows. The solution value at node i is a�ected by

incoming antidi�usive �uxes from the neighbouring nodes. In the worst case, these �uxes
have the same sign and threaten to generate or enhance a local extremum. Let us denote the
sum of all positive/negative contributions to node i by

P±
i =

1
mi

∑
j �=i

max
min {0; fij} (56)
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The maximum=minimum increment which node i is allowed to accept is given by the distance
to the local extremum:

Q±
i = ũ

max
min
i − ũi (57)

A geometric interpretation of the auxiliary quantities P±
i and Q±

i is presented in Figure 1.
It can be seen that unlimited antidi�usive �uxes acting in concert may force the solution
beyond the physically admissible range, thus leading to spurious overshoots and undershoots.
The maximum percentage of a �ux into node i which can be retained reads

R±
i =

{
min{1; Q±

i =P
±
i } if P±

i �=0
0 if P±

i =0
(58)

Since the nodes exchange mass on a bilateral basis, a positive �ux fij into node i is always
balanced by a negative �ux fji=−fij into node j and vice versa. For the �nal solution to
remain within the bounds at both nodes, we must check the sign of the �ux and take the
minimum of the nodal correction factors:

�ij=

{
min{R+i ; R−

j } if fij¿0

min{R+j ; R−
i } if fij¡0

(59)

This choice of the coe�cients �ij is safe enough to guarantee that the constraint ũ
min
i 6un+1i

6ũmaxi is satis�ed at all nodes. Hence, the �nal solution will preserve positivity if the low-
order one does. The resulting �ux limiter is independent of the number of spatial dimensions
and can easily be implemented as a ‘black-box’ routine which computes the correction factors
given an array of antidi�usive �uxes for each pair of neighbouring nodes.

8.3. Positivity proof

In order to prove the positivity of Zalesak’s limiter for arbitrary time-stepping, we have
to apply the mathematical theory of positivity-preserving schemes rather than the heuristic
considerations presented above. The crucial point of the proof is the following representation
of the right-hand side of our FEM-FCT schemes:

RHS=miũi +
∑
j �=i
�ijfij=miũi + ciQi; ci=

∑
j �=i �ijfij
Qi

(60)

where the intermediate solution ũ= uL(tn+1−�) depends on the concrete time-stepping scheme,
and the multiplier Qi is chosen to be

Qi=



Q+i = ũ

max
i − ũi if

∑
j �=i�ijfij¿0

Q−
i = ũ

min
i − ũi if

∑
j �=i�ijfij¡0

1 if
∑

j �=i �ijfij=0

(61)
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In accordance with the FCT theory, all antidi�usive �uxes which try to accentuate a local
maximum or minimum must be completely cancelled:

�ij=0 if ũi= ũ
max
i ; fij¿0 or ũi= ũ

min
i ; fij¡0 (62)

This relation implies that Qi �=0, so that no division by zero takes place in (60).
Note that the auxiliary coe�cient ci is always non-negative. Let the local extremum ũ

max
min
i

be attained at some node k adjacent to node i. Then the antidi�usive term exhibits a local
extremum diminishing structure, and we obtain

RHS=miũi + ci(ũk − ũi)= (mi − ci)ũi + ciũk ; ci¿0 (63)

According to our lemma, both explicit and implicit FEM-FCT schemes of form (49) will
preserve positivity as long as mi¿ci. This important observation frames a general rule for the
selection of the correction factors �ij.
It remains to show that Zalesak’s limiter does possess the desired properties. The side

condition (62) is automatically satis�ed, since Q±
i =0 implies R

±
i =0 and �ij=0. Hence,

any enhancement of local extrema is neutralized by the limiter. Furthermore, the following
estimate holds: ∑

j �=i
�ijfij6

∑
j �=i
�ij max{0; fij}6miR+i P+i 6miQ+i (64)

In much the same way, it can be veri�ed that∑
j �=i
�ijfij¿

∑
j �=i
�ijmin{0; fij}¿miR−

i P
−
i ¿miQ

−
i (65)

This proves that the corrected antidi�usive �uxes satisfy the constraint mi¿ci. Therefore, the
right-hand side poses no hazard to positivity. Recall that the matrix of the left-hand side
was assumed to be an M-matrix. Therefore, the positivity of un is inherited by un+1 provided
that the time step is small enough. According to (24), the backward Euler time stepping is
unconditionally positive. The Crank–Nicolson scheme is subject to the CFL-like condition for
the auxiliary problem (50), but the admissible Courant numbers are twice as large as those
for the fully explicit scheme.

8.4. Limiting for systems of equations

Despite remarkable progress made in the development of FCT schemes for scalar equations,
the issue of �ux correction for systems of hyperbolic conservation laws remains largely un-
resolved. Of course, it is possible to use an operator-splitting approach, whereby the coupled
equations are solved in a segregated manner within a block-iterative loop. However, inde-
pendent limiting of intricately related variables was found to produce unsatisfactory results in
some cases. This has led the FCT community to devise a common �ux limiter for the whole
system by merging individual limiters for di�erent variables. The resulting improvements in
the numerical solutions can be attributed to the fact that the phase errors for the involved
equations become synchronized [4]. Nevertheless, there is still a large degree of empiricism
in the construction of such limiters, and their performance is highly problem dependent.
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Flux correction for the system of Euler equations was addressed by L�ohner [4, 9]. He
singled out the following approaches to the design of a synchronized limiter:

• Use of a limiter for a single ‘indicator variable’.
• Use of the minimum of limiters obtained for some group of variables.

The combination of limiters for the density and energy is to be recommended for the treatment
of highly dynamic �ows characterized by propagating and=or interacting shock waves. The
minimum of correction factors for the density and pressure is also claimed to perform fairly
well, especially for steady-state problems [4]. As a matter of fact, the synchronized limiter may
be formulated in terms of variables other than those being solved for. A general algorithm
for the construction of a �ux limiter based on arbitrary derived quantities is presented in
Reference [9].

9. SUMMARY OF THE ALGORITHM

As we have seen, Zalesak’s limiter can be integrated into the generalized FEM-FCT formu-
lation and applied to a wide range of CFD problems described by (systems of) conservation
laws of form (1). The proposed high-resolution �nite-element schemes can be implemented
on arbitrary unstructured grids using the conventional or edge-based data structure. The main
algorithmic steps can be summarized as follows:

1. Discretize the governing equation by a high-order �nite-element method.
2. Perform mass lumping and eliminate negative o�-diagonal entries of the transport oper-
ator to construct the associated low-order scheme.

3. For �¡1, examine the diagonal entries of the low-order operator and adapt the time step
so as to comply with the positivity condition.

4. Advance the solution in time by the high-order scheme to obtain uH .
5. Assemble the raw antidi�usive �uxes fij for each pair of nodes.
6. Compute the positivity-preserving auxiliary solution ũ= uL(tn+1−�).
7. Cancel all antidi�usive �uxes directed down the gradient of ũ.
8. Apply Zalesak’s limiter to calculate the correction factors �ij.
9. Add the contribution of the limited antidi�usive �uxes �ijfij to the right-hand side of the
low-order scheme.

10. For �=0, scale the right-hand side by the diagonal matrix M−1
L . Otherwise, solve the

linear system for the end-of-step solution un+1.

In the non-linear version of the FEM-FCT algorithm the high-order solution uH is replaced
by the last iterate u(l) so that just one linear system per outer iteration has to be solved.
Furthermore, only the low-order matrix C(u(l)) needs to be assembled and stored.
A remark is in order regarding the iterative solution of linear systems. Explicit schemes

do not require any advanced linear algebra tools, since the consistent mass matrix can be
e�ciently ‘inverted’ e.g. by just a few Jacobi-like iterations using the lumped mass matrix
as a preconditioner [5]. Similarly, for relatively small time steps the non-symmetric linear
systems engendered by implicit schemes can be solved by BiCGSTAB or multigrid methods
with basic components like Jacobi, Gau
-Seidel or SOR smoothers. However, the large time
steps a�orded by the unconditionally positive backward Euler=FCT method may cause a severe
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Figure 2. Flow structure in the shock tube.

deterioration of the matrix for the high-order system, so that an iterative method may fail to
converge. This can be recti�ed by resorting to defect correction, which approximates the
original matrix by a well-behaved preconditioner. The M-matrix properties of the low-order
operator make it particularly amenable to iterative solution. The robustness of the solver can
be further enhanced by using appropriate renumbering techniques in conjunction with the ILU
decomposition as a smoother=preconditioner.

10. NUMERICAL EXAMPLES

In the examples which follow, we study the behaviour of the implicit Crank–Nicolson (CN=
FCT) and backward Euler (BE=FCT) schemes. Strictly speaking, the numerical solutions cor-
responding to the former method were obtained using the value �=0:55 of the implicitness
parameter. This is a standard trick which enhances the stability of the Crank–Nicolson dis-
cretization without incurring any appreciable loss of accuracy. The fully explicit Lax–Wendro�
(LW=FCT) method produces similar results. Many other test problems featuring both smooth
and discontinuous solutions were considered in the preceding paper [21] which should also be
consulted for a discussion of certain numerical di�culties resulting from an improper treatment
of out�ow boundaries.

10.1. Shock tube problem

A simple one-dimensional example that is frequently used to evaluate compressible �ow
solvers is the shock tube problem of gas dynamics [23, 38]. Its physical prototype is a closed
tube initially �lled with a quiescent gas separated by a membrane into two regions. A higher
gas pressure is maintained on the left of the tube than on the right. The removal of the
membrane brings about a net motion of gas in the direction of lower pressure. Provided that
the gas is distributed uniformly across each cross-section of the tube, the evolution of the
�ow is described by the one-dimensional Euler equations (31).
The �ow structure sketched in Figure 2 is characterized by three distinct waves travelling

with di�erent speeds and delimiting regions in which the state variables are constant. After
the membrane is abruptly removed at time t=0, a normal shock wave sets o� for the region
of lower pressure with velocity vs satisfying the Rankine–Hugoniot conditions. All of the
primitive variables are discontinuous across the shock. The pressure jump propels the mass
in the same direction with velocity vp. The moving interface between the regions of di�er-
ent densities but constant velocity and pressure represents a contact discontinuity. Finally,
a rarefaction wave propagates in the opposite direction providing a smooth transition to the
original values of the state variables in the region of high pressure. In fact, this �ow structure
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Figure 3. Shock tube problem. Numerical solutions at t=0:231.

prevails only until the shock wave impinges on the right lid of the tube or the rarefaction
wave reaches the left lid. If these phenomena are to be captured, it is necessary to deal with
re�ections of shocks and=or rarefaction waves.
Let us consider the following initial data for the Riemann problem:


�L

vL

pL


 =



1:0

0:0

1:0


 for x∈ [0; 0:5];



�R

vR

pR


 =



0:125

0:0

0:1


 for x∈ (0:5; 1]

The numerical solutions displayed in Figure 3 were computed on a uniform mesh of 100 linear
�nite elements with a �xed time step �t=10−3. In all diagrams, the dotted line designates
the exact solution, which was obtained using the technique presented in Reference [39]. The
snapshots correspond to the time instant t=0:231. The upper plots show the results produced
by the low-order methods based on the spectral radius of the Roe matrix (left) and on Roe’s
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approximate Riemann solver (right). Even though the former strategy leads to a slightly
stronger smearing, both solutions are of comparable quality and reproduce the �ow behaviour
fairly well without generating oscillations.
In the FEM-FCT framework, scalar dissipation proportional to the largest eigenvalue appears

to perform better than the �ux di�erence splitting or the brute-force addition of constant
arti�cial di�usion. This can be explained by the already mentioned fact that some (but not too
much) extra di�usion is bene�cial as long as it can be removed in the antidi�usive step. For
this reason, it is not advisable to employ scalar upwinding for individual variables constituting
the hyperbolic system. In our experience, this segregated approach to the construction of the
low-order scheme yields a sensible low-order solution, but the �ux-corrected version may be
polluted by some minor ripples.
Having adopted the arti�cial di�usion proportional to the spectral radius of the Roe matrix,

we ought to investigate the ability of the �ux limiter to curtail it. The numerical solutions
produced by the CN=FCT and BE=FCT schemes are presented at the bottom of Figure 3. Both
methods are seen to provide a sharp resolution of discontinuities while keeping the solution
free of oscillations. The �rst-order accurate BE=FCT scheme (right) tends to be di�usive
at large time steps. This de�ciency is partially compensated by the unconditional positivity
of the fully implicit scheme, which makes it a natural choice for steady-state computations
and=or CFD solvers incorporating adaptive mesh re�nement (see the two-dimensional example
below).
Following L�ohner et al. [4], we applied the synchronized �ux limiter de�ned by the mini-

mum of the correction factors for the density and energy. The results produced by the mini-
mum of the limiters for all three conservative variables are slightly more di�usive than those
shown in Figure 3. Nevertheless, they still look quite reasonable, which is not the case if
constant di�usion is used to construct the low-order scheme.

10.2. Rotation of a slotted cylinder

Our �rst two-dimensional example deals with the solid body rotation of a slotted cylinder.
This classical benchmark problem, which was proposed by Zalesak [2] for testing transport
algorithms, turns out to be rather challenging because of its discontinuities and small-scale
features.
In our simulations, the initial data was taken to be

u(x; y; 0)=

{
1 R¡1=3 and (|x|¿0:05 or y¿0:5)
0 otherwise

where R=
√
x2 + (y − 1=3)2. The cylinder de�ned thereby is exposed to the non-uniform

velocity �eld v=(−y; x) and undergoes a counterclockwise rotation about the centre of the
square domain (−1; 1)× (−1; 1). The local Courant number increases with distance from the
origin. Homogeneous Dirichlet boundary conditions are prescribed on the in�ow parts of the
boundary where the normal velocity is directed into the domain.
The transport equation is discretized in space on a uniform mesh of 129× 129 grid points.

Figure 4 shows the numerical solutions produced by the CN=FCT and BE=FCT schemes
using quadrilateral Q1 elements (left) or triangular P1 elements (right) at the time instant
t=2� which corresponds to one full revolution of the cylinder. Note that the exact solution
coincides with the initial data in this case. Both FEM-FCT methods under consideration
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Figure 4. Rotation of a slotted cylinder. FEM-FCT solution at t=2�.

succeed in getting rid of non-physical oscillations. As a matter of fact, the prelimiting of
antidi�usive �uxes has proved its worth for this test. If it is omitted, the computational
results are contaminated by innocuous but ugly ripples.
No appreciable di�erences were observed in the performance of quadrilateral and triangular

elements (see Figure 4). The employed time step �t=2:5 × 10−3 was deliberately chosen
relatively large to provide a fair comparison between the �rst-order accurate and second-order
accurate time stepping. While the CN=FCT scheme resolves the discontinuity very well, the
BE=FCT method brings about a considerable erosion of the cylinder. At the same time, the
bridge is preserved, and the �ll-in of the slot is insigni�cant, since it is located in the low
Courant number zone, where the accuracy of the backward Euler method is su�cient.
As the time step is re�ned beyond �t=10−3, the impact of the temporal error diminishes,

and the numerical solutions delivered by the CN=FCT and BE=FCT schemes become virtually
indistinguishable. In practice, it would be wasteful to use an implicit scheme with such small
time steps because the computational cost per time step is rather high. Indeed, it is the ability
to handle large Courant numbers which makes implicit methods attractive in the �rst place.
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The above example serves as an evidence that genuinely time-dependent problems should
be treated explicitly for accuracy reasons. However, this does not undermine the utility of
unconditionally positive implicit schemes, which lend themselves to an e�cient treatment of
less dynamic applications.

10.3. Convection–di�usion of a Gaussian hill

In order to assess the numerical dissipation introduced by our FEM-FCT schemes, let us
consider the rotation of a two-dimensional Gaussian hill being gradually smeared by di�usion
as it orbits the origin. The computational domain and the velocity �eld are the same as in
the previous example.
In the rotating Lagrangian reference frame, the governing equation

@u
@t
+ v · ∇u= ��u

reduces to a pure di�usion problem which can be solved analytically. The exact solution we
are after is a normal distribution function

u(x; y; t)=
1
4��t

e−r
2=4�t ; r2 = (x − x̂)2 + (y − ŷ)2

where x̂ and ŷ denote the time-dependent peak co-ordinates

x̂(t)= x̂(0) cos t − ŷ(0) sin t; ŷ(t)=−x̂(0) sin t + ŷ(0) cos t
The initial condition is given by the Dirac delta function

u(x; y; 0)= �(r0)

Naturally, it is not possible to specify a delta function as initial condition in a �nite-element
code. Instead, it is reasonable to concentrate the whole mass at a single node. The integral of
a discrete function over the domain � can be computed as the sum of nodal values multiplied
by the entries of the lumped mass matrix:∫

�
uh dx=

∫
�

∑
i
ui’i dx=

∑
i
uimi

The total mass of a delta function equals unity. Hence, we should �nd the node i0 closest to
the peak location (x̂0; ŷ0) and set u

0
i0 = 1=mi0 ; u

0
i =0; i �= i0.

Furthermore, the actual co-ordinates of the peak may di�er from those presented above.
They can be calculated as the mathematical expectation of the centre of mass under the
probability distribution de�ned by the numerical solution:

x̂h(t)=
∫
�
xuh(x; y; t) dx; ŷh(t)=

∫
�
yuh(x; y; t) dx

The quality of approximation may be assessed by considering the standard deviation

	2h(t)=
∫
�
r2huh(x; y; t) dx; r2h =(x − x̂h)2 + (y − ŷh)2
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Figure 5. Convection–di�usion of a Gaussian hill, 128× 128 Q1 -elements.

which quanti�es the rate of smearing caused by arti�cial di�usion and equals 	2 = 4�t for the
exact solution. The dissipative properties of a discretization scheme are characterized by the
di�erence between the exact and numerical values of the variance [40].
Let the initial peak be located at the point (0; 1=2) and take the di�usion coe�cient to be

�=10−3. The exact and numerical solutions after one complete revolution (t=2�) are pre-
sented in Figure 5. It is instructive to examine the dependence of the numerical variance on the
employed time step. Figure 6 illustrates the behaviour of the relative error �	rel =	2h=(4�t)−1
produced by the BE=FCT and CN=FCT schemes for time steps in the range 10−3–10−2. The
backward Euler method is only �rst-order accurate in time. Therefore, it proves extremely
di�usive at large time steps. The amount of numerical di�usion decreases linearly as the time
step is re�ned, and the accuracy approaches that of the second-order-accurate Crank–Nicolson
scheme.

10.4. Steady-state convection–di�usion

As we have seen, the fully implicit BE=FCT scheme is quite di�usive for transient transport
problems. At the same time, it appears to be very attractive as an iterative solver for (quasi-)
steady-state convection–di�usion equations. Indeed, the steady-state solution can be obtained
by applying an FEM-FCT method to the associated time-dependent problem. Possible non-
linearities can be treated in the same iterative loop. The temporal accuracy of the method does
not matter in this case, since the time step is merely an arti�cial parameter which determines
the convergence rates. In fact, local time stepping can be employed. As long as the accuracy
of the converged solution depends entirely on the spatial discretization, it is expedient to
choose the time steps as large as possible, so as to reduce the computational cost. This
makes explicit schemes non-competitive, since they must satisfy a restrictive CFL condition.
Moreover, numerical solutions produced e.g. by the Lax–Wendro� method are a�ected by the
streamline di�usion depending on the arti�cial time step. Hence, steady-state problems call
for an implicit treatment.
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Figure 6. Relative variance error vs the time step.

Let us illustrate the advantages of the BE=FCT method by a two-dimensional steady-state
example. Consider the singularly perturbed convection–di�usion equation

v · ∇u− ��u=0 in �=(0; 1)× (0; 1)
where v=(cos 10o; sin 10o) and �=10−3. The concomitant boundary conditions read

@u
@y
(x; 1)=0; u(x; 0)= u(1; y)=0; u(0; y)=

{
1 y¿0:5

0 y¡0:5

The solution to this elliptic problem is characterized by the presence of a sharp front next
to the line x=1. The boundary layer develops because the solution of the reduced problem
(�=0) does not satisfy the homogeneous Dirichlet boundary condition imposed for the full
problem.
A reasonable initial approximation for the pseudo-time-stepping loop is given by

u0(x; y)=

{
1− x y¿0:5

0 y¡0:5

For practical applications, it is worthwhile to compute the stationary low-order solution using
any direct or iterative solver, and then activate the time-dependent FEM-FCT algorithm. In
this case, the cost of �ux correction is minimized, since the initial guess should be close
enough to the steady-state limit. Furthermore, the use of the consistent mass matrix is not
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Figure 7. Steady-state convection–di�usion in 2D, �=10−3.

justi�ed for stationary problems, so that mass lumping is appropriate also for the high-order
scheme.
The numerical solutions depicted in Figure 7 indicate that the backward Euler method

equipped with �ux correction is capable of producing accurate solutions to steady-state prob-
lems at a very low computational cost. It seems to be particularly e�cient when used in
combination with adaptive mesh re�nement. The solution displayed on the left of Figure 7
was computed on a uniform mesh of 32×32 bilinear elements. It is completely non-oscillatory
and exhibits a sharp resolution of the boundary layer. Remarkably, comparable accuracy can
be achieved with an adaptive mesh consisting of just 160 elements (see Figure 7, right). In
addition, the BE=FCT method can be operated with very large time steps, unlike its explicit
counterparts which are subject to a CFL condition based on the smallest mesh size. This
con�rms that the fully implicit approach constitutes a natural framework for the incorporation
of an adaptive grid strategy aimed at providing high resolution in the most e�cient manner.

11. CONCLUSIONS

A new family of �nite-element methods based on the �ux-corrected-transport procedure was
presented. It was shown that the transition to an edge-based data structure is feasible not only
for linear triangles and tetrahedra but also for high-order approximations on arbitrary meshes.
The proposed approach to decomposition of convective and di�usive terms resulting from
the Galerkin discretization into �uxes is very straightforward as opposed to the technique of
Peraire et al. [8] underlying some modern compressible �ow solvers. The skew symmetry of
internodal �uxes guarantees strict mass conservation and makes it possible to apply essentially
one-dimensional �ux correction tools. In fact, an edge-based representation of antidi�usive
�uxes can be used in conjunction with the conventional data structure for other terms. Hence,
�ux limiters can be built into existing �nite-element software without major modi�cations.
Another highlight of this paper was the algorithm for the construction of low-order schemes

to be combined with high-order ones in the FEM-FCT framework. Row-sum mass lumping
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was employed to remove implicit antidi�usion from the consistent mass matrix. An oscillation-
prone transport operator was modi�ed by adding discrete di�usion so as to eliminate negative
matrix entries. The source terms were linearized in order to satisfy a rigorous positivity
criterion building on the concept of an M-matrix. The derivation of positivity-preserving low-
order schemes for systems of hyperbolic conservation laws was discussed. Numerical examples
for the one-dimensional shock tube problem indicate that the low-order method based on the
spectral radius of the Roe matrix produces reasonable results even as a stand-alone solver for
the Euler equations of gas dynamics.
Zalesak’s limiter was embedded into a generalized FEM-FCT formulation and backed by a

solid mathematical background. A readily computable upper bound for admissible time steps
was provided. The presented numerical examples testify that the CN=FCT scheme outperforms
the BE=FCT method when it comes to time-accurate simulation of transient �ows. At the
same time, the backward Euler scheme is unconditionally positive and constitutes an excellent
solver for steady-state problems. The fully implicit treatment is also appropriate if a non-
uniform distribution of Courant numbers (due to adaptive mesh re�nement or strongly varying
velocities) makes the CFL condition too restrictive. In other situations, a second-order time
discretization of Lax–Wendro� or Crank–Nicolson type should be employed for accuracy
reasons. Hence, the uni�ed FEM-FCT formulation encompassing both explicit and implicit
schemes represents a very �exible approach to be recommended for a wide range of CFD
applications. Its extension to the multidimensional Euler equations will be presented in a
forthcoming paper [41].
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